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?

What are the properties of the nuclear matter ?

Cold nuclear matter ⇒ Hot medium
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Q2

s ∼ ρ ∼ A1/3 sλ

CGC = THEORY OF GLUON SATURATION

Fµν ∼

Q2

s

g

Asymptotic freedom: αs(Qs2) << 1 ⇒ Perturbation theory is valid!

Factorization theorems are broken at low x and high A, but a new type of universal 
characteristic of hadron/nucleus wave function emerges: color multipole. 

ρ =
A xG(x)

SA
ρ =

A xG(x)
SA

Solution to the classical Yang-Mills equations

with

3

low x 
gluons

low x 
gluons
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INCLUSIVE LIGHT HADRONS
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•Multiplicity is determined only by the initial conditions

KLN model
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approximation) [17]. Multiple rescatterings are easier to resum by calculating the amplitude in the transverse
coordinate space [13,17]. To obtain the gluon production cross section we have transform the amplitude into
the momentum space and square it. The diagrams contributing to the gluon production cross section are
shown in Fig. 5. The graph in Fig. 5A corresponds to the square of the amplitude corresponding to the case
when the gluon is present in proton’s wave function before the collision. The diagram in Fig. 5B gives the
interference term between the amplitude from Fig. 5A and the amplitude in which the gluon is emitted by
the proton after the collision. Of course a diagram complex conjugate to Fig. 5B should also be included.
It can be shown that the square of the diagram with late gluon emission does not have any interactions
in it and can be neglected. (The gluon exchanges between the proton and the nucleus cancel.) In [17] the
interactions counting was a little different from the one we will present below and that diagram was included,
leading to the same result.
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FIG. 5. Covariant gauge (or more accurately A− = 0 gauge) gluon production diagrams for proton–nucleus collision
as considered in [17]. Multiple rescatterings in the nucleus determine the interactions in this gauge.

Note also that in the quasi–classical approximation depicted in Fig. 5 the interaction is modeled by single
and double gluon exchanges. The limit of no more than two gluons per nucleon is imposed [18]. If a particular
nucleon exchanges a gluon with the rest of the system in the amplitude then it has to exchange a gluon in
the complex conjugate amplitude to remain color neutral. Alternatively the nucleon can exchange two gluon
in the amplitude (complex conjugate amplitude) , but then it can not interact in the complex conjugate
amplitude (amplitude). This is done in the spirit of the quasi–classical approximation resumming all powers
of α2

s A1/3, as was discussed in the Introduction.
In the graph of Fig. 5A the nucleons of the nucleus interact with both the proton and the gluon by gluon

exchanges. It was noticed in [17] that the interactions with the proton can be neglected due to real–virtual
cancellation. Moving a gluon exchanged between the nucleus and the proton across the cut does not change
the momentum of the produced gluon in Fig. 5A but does change the sign of the whole term, causing the
cancellation. That is why we have to consider only the interactions with the gluon in Fig. 5A. Similar kind of
cancellation does not happen in Fig. 5B. Moving an exchanged (Coulomb) gluon across the cut would force
us to move it across the gluon emission vertex for the produced gluon on the right hand side, thus changing
the momentum of the produced gluon. Thus all the possible interactions have to be included in Fig. 5B. On
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miraculous 
factorization
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FROM PA TO AA

•Factorization holds for inclusive gluon production in pA (this is the only known 
case). However, there are no analytical results for AA ➝ need models or numerical 
calculations ➝ uncertainties. 

can be done either in the center of mass frame or in the rest frame of one of the nuclei. We will work in
the rest frame of the second nucleus. The diagrams contributing to gluon production in AA are depicted
in Fig. 9. They are somewhat similar to the diagrams of Fig. 6 and of Fig. 5. The incoming nucleus may
or may not have a Weizsäcker-Williams gluon in it. In the first case the system multiply rescatters in the
second nucleus at rest. This is illustrated in Fig. 9A. Similar to pA case multiple rescatterings between the
first and the second nuclei cancel. Only the interactions with the gluon survive. The interference graph of
the amplitude from Fig. 9A and the amplitude where the gluon is emitted after the interaction is shown
in Fig. 9B. Analogous to pA case we work with diagrams where the final state interactions are limited to
multiple rescatterings in the second nucleus and a single gluon emission (or absorption) by the first nucleus.
As was demonstrated in Sect. III in the case of proton-nucleus scattering all other final state interactions
including “produced” gluons’ merging cancel. Here we argue that this also happens in the nucleus-nucleus
collisions.

nucleus #2

y__x

_k

_k
y__x

A
nucleus #1

B

nucleus #2

nucleus #1

FIG. 9. Diagrams contributing to the gluon production in nucleus-nucleus collisions in the A+ = 0 light cone
gauge.

In Sect. III, analyzing proton-nucleus scattering we concluded that the diagrams where the gluon produced
by interaction with the proton merges with the non-Abelian Weizsäcker-Williams wave function of the nucleus
cancel. That allowed us to neglect similar diagrams in Fig. 9 above. However, there exists also a somewhat
different class of diagrams, one of which is shown in Fig. 10. There the gluons that merge in the later stages
of the collision both were produced in the interaction of the Weizsäcker-Williams wave function with the
second nucleus. This brings us back to the class of diagrams depicted in Fig. 8, where there is also a merger
of two “produced” gluons. Since the diagrams of Fig. 8 canceled in the case of pA collisions we have a strong
reason to believe that the graphs of the type shown in Fig. 10 also cancel in AA collisions. Thus Fig. 9
contains all the diagrams that contribute to gluon production in nucleus-nucleus collisions.

FIG. 10. An example of a diagram which is not included in the gluon production mechanism of Fig. 9. To avoid
possible confusion the three gluon vertices in this diagram are marked by black dots.
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If there is a factorization we can infer 
the magnitude of the cold nuclear 
matter effect in AA from that in DA 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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Fig. 1. The discovery in
√

sNN = 130 GeV/c Au+Au collisions at RHIC of strong elliptic flow (left, [13])
and of jet quenching (right, [14]). Left: The flow strength parameter v2 versus transverse momentum pT

for charged particles produced at mid-rapidity in minimum bias collisions. Right: The suppression factor
RAA versus pT for π0’s (circles) and charged particles (squares) in central collisions, compared to lower
energy results.

where the denominator consists of the p+p yield scaled, as per perturbative QCD (pQCD)
by the equivalent parton+parton flux from a Au+Au collision, the suppression was found
to be as large as a factor of 5 in the most central events at

√
sNN = 200 GeV[15,16]. In a

curious inversion, the realization[17] that detailed information on the opacity and other
properties of a dense thermal QCD system could be obtained using the very deviations
from pQCD expectations absent interactions in a produced medium spurred development
and application of a sophisticated technology[18,19,20,21,22,23] making possible “tomo-
graphic” studies of the produced matter. The observed quenching was consistent with
parton energy loss rates ∼ 15 times higher than in cold nuclear matter[27], and demanded
an initial matter density of order 100 times that of normal nuclear matter[24,25,26]. A
striking observation in support of these estimates was the disappearance of the “away-
side” jet partner in Au+Au collisions[29] (Figure 2), indicating that the matter density
was essentially opaque to high-pT partons and that the observed high transverse momen-
tum “trigger” particles were dominated by surface emission.

Three other early key developments can only be briefly mentioned here:
– The interpretation of the jet-quenching results was bolstered by reliance on in situ

measurement of baseline (p+p) and control (d+Au) data. Comparison of the p+p data
to theoretical calculations established the quantitative reliability of pQCD calculations
at RHIC energies[30]. The demonstration that suppression effects were absent in d+Au
collisions[31,32,33,34] provided crucial evidence that the quenching observed in Au+Au
collisions was due to parton propagation in a dense thermal environment, rather than
to modifications of the nuclear wave function.

W.A. Zajc / Nuclear Physics A 805 (2008) 283c–294c 285c
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EFFECT OF FRAGMENTATION?

•Fragmentation 
depends only on xp

•Saturation effect 
depends only on xA

⇒
 can be tasted by 
measurements at 
different √s.

Kopeliovich at al

9
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!  Quark masses:! Quark masses span a wide 
kinematical range: 

Light quarks 

Heavy quarks 

!  Heavy quark is heavy if   

!  Heavy quark is “light” if  !

Quark mass 

Qs(x ∼ 1/
√
s) � mQ

Qs(x ∼ 1/
√
s) � mQ

Qs(x ∼ 1/
√
s)

Light quarks

Heavy quarks

ΛQCD

Qs

`Heavy’ and `light’ are determined by the ratio m2/Qs2

• Heavy quarks are 
produced at short 
distances ~1/2m~0.1 fm 
(charm) ⇒ αs<<1

• However, 
quarkonium binding 
is not perturbative:  

M2 − 4m2

4m2
� 1

Therefore, cc➝J/ψ 
is non-perturbative

HEAVY QUARKS

10
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INCLUSIVE OPEN HEAVY QUARK

Valence quark of 
p or D

Valence quarks of 
different nucleons

c

tint

tp ~1/x 

Kopeliovich et al , 2001
KT 2004;
Blaizot, Gelis, 
Venugopalan 2004;
Kovchegov, KT 2006
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with Acov
± the components of the unknown solution of Eq. (5). Thus generally speaking the matrices U(x)

and S(x) are not known. In arriving at the solution of Eq. (9) given by Eqs. (10), (11) and (12) we have
fixed the initial conditions for Eq. (9): we required that before the collision the current Jcov

µ should be given

by the free nuclear current Jcov (0)
µ of Eq. (7). This is just a casuality requirement which makes sure that

there is no interactions between the nuclei prior to collision. Eqs. (10), (11) and (12) certainly satisfy this
initial condition, since before the collision U = S = 1, as the fields of free nuclei are non-zero only on
light cone (see for instance [15,33]). Since Eq. (9) is a linear differential equation the solution of Eq. (10) is
unique for the given initial condition of Eq. (7).

Eq. (10) has a very simple physical interpretation: the valence quarks in the nuclei during and after the
collision are still moving along the same straight lines on the light cone. The only effect of the collision on
these valence quarks is the rotation of their color charges by the gluon field created in the collision and by
the gluon field of the other nucleus. This has been discussed and illustrated in [28] at the lowest nontrivial
order in αs.

Eqs. (5) and (10) provide us with complete formulation of the problem in covariant gauge. We have to
solve the Yang-Mills equations (5) with the conserved current (10). We are now going to demonstrate an
interesting property of the current.

Let us perform a gauge transformation with the matrix S(x). The new gluon field will be given by

ALC
µ = S Acov

µ S−1 −
i

g
(∂µS) S−1. (13)

As easy to see ALC
+ = 0, which means that the gauge transformation with the matrix S(x) transforms the

field into the light cone gauge. The current in the light cone gauge is

JLC
+ = S(x)U−1(x)Jcov (0)

+ (x)U(x)S−1(x), JLC
− = Jcov (0)

− (x). (14)

From Eq. (14) it follows that the “−” component of the current in the ALC
+ = 0 light cone gauge remains

unchanged throughout the collision and is equal to the order g “initial” free nucleus current in the covariant
gauge. That means that the charges of the second nucleus in the light cone gauge do not get rotated in the
collision. Let us illustrate what this statement means in terms of diagrams.

C D EA B

FIG. 3. Diagrams contributing to the classical gluon field in covariant gauge at order g3.

In [27–29] the classical gluon field of two colliding nuclei was found perturbatively at the lowest non-trivial
order in g, which happened to be order g3. The diagrams contributing to the gluon field at this order in
covariant gauge are shown in Fig. 3. There we present a collision of two ultrarelativistic nucleons, the upper
one of which is moving in the light cone “plus” direction while the lower one is moving in the “minus”
direction. The straight lines in Fig. 3 correspond to the valence quarks. The cross denotes the point in
coordinate space where one measures the field.

The interpretation of the diagrams of Fig. 3 has been given in [28]. In diagram A two gluon fields merge
to produce the final field. In the diagrams B and C the current of the upper quark gets rotated by the field
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approximation) [17]. Multiple rescatterings are easier to resum by calculating the amplitude in the transverse
coordinate space [13,17]. To obtain the gluon production cross section we have transform the amplitude into
the momentum space and square it. The diagrams contributing to the gluon production cross section are
shown in Fig. 5. The graph in Fig. 5A corresponds to the square of the amplitude corresponding to the case
when the gluon is present in proton’s wave function before the collision. The diagram in Fig. 5B gives the
interference term between the amplitude from Fig. 5A and the amplitude in which the gluon is emitted by
the proton after the collision. Of course a diagram complex conjugate to Fig. 5B should also be included.
It can be shown that the square of the diagram with late gluon emission does not have any interactions
in it and can be neglected. (The gluon exchanges between the proton and the nucleus cancel.) In [17] the
interactions counting was a little different from the one we will present below and that diagram was included,
leading to the same result.
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FIG. 5. Covariant gauge (or more accurately A− = 0 gauge) gluon production diagrams for proton–nucleus collision
as considered in [17]. Multiple rescatterings in the nucleus determine the interactions in this gauge.

Note also that in the quasi–classical approximation depicted in Fig. 5 the interaction is modeled by single
and double gluon exchanges. The limit of no more than two gluons per nucleon is imposed [18]. If a particular
nucleon exchanges a gluon with the rest of the system in the amplitude then it has to exchange a gluon in
the complex conjugate amplitude to remain color neutral. Alternatively the nucleon can exchange two gluon
in the amplitude (complex conjugate amplitude) , but then it can not interact in the complex conjugate
amplitude (amplitude). This is done in the spirit of the quasi–classical approximation resumming all powers
of α2

s A1/3, as was discussed in the Introduction.
In the graph of Fig. 5A the nucleons of the nucleus interact with both the proton and the gluon by gluon

exchanges. It was noticed in [17] that the interactions with the proton can be neglected due to real–virtual
cancellation. Moving a gluon exchanged between the nucleus and the proton across the cut does not change
the momentum of the produced gluon in Fig. 5A but does change the sign of the whole term, causing the
cancellation. That is why we have to consider only the interactions with the gluon in Fig. 5A. Similar kind of
cancellation does not happen in Fig. 5B. Moving an exchanged (Coulomb) gluon across the cut would force
us to move it across the gluon emission vertex for the produced gluon on the right hand side, thus changing
the momentum of the produced gluon. Thus all the possible interactions have to be included in Fig. 5B. On
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INCLUSIVE OPEN CHARM
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INCLUSIVE OPEN BEAUTY
KKT model
KT, 2007
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Need higher pT measurements to understand the transition 
to hard pQCD
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FACTORIZATION IN OPEN CHARM

Fujii, Gelis, 
Venugopalan 

RHIC
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FACTORIZATION IN J/Ψ

We cannot infer the the cold nuclear matter effect in AA from DA.
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Slide stolen 
from T. Frawley

ASSUMING FACTORIZATION IN J/Ψ

Similar results obtained by Lansberg et al 2010. 
16

This does not look like a 
reasonable behavior.
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J/Ψ PRODUCTION MECHANISMS

• Color singlet model

May 12, 2010 Jianwei Qiu, BNL   12 

CSM:  Huge high order corrections 

LO 
associate

NLO

NNLO
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• Color evaporation model

May 12, 2010 Jianwei Qiu, BNL   13 

CEM:  OK for inclusive production 

!  Good for total cross section, ok for PT distribution: 

Amundson et al, PLB 1997 

Amundson et al, 1997

• Non-relativistic QCD model 

May 12, 2010 Jianwei Qiu, BNL   16 

Surprises from polarization measurements 

!  Transverse polarization at high pT? 
NRQCD: Cho & Wise, Beneke & Rothstein, 1995, … 

CDF Collaboration, PRL 2007 

KT-fact: Baranov, 2002 

Production mechanism in pA is different!
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J/Ψ PRODUCTION IN PA

!l1, x1
!l1, x1
!l1, x1

A) B)

hadron − hadron collisions

ΨV (r) ΨG(l1; r, z)ΨV (r) ΨV (r)

!l2, x2 !l2, x2 l3, x2

ΨG(l1; r, z)

z01 z02

hadron − nucleus collisions

α
4

sA
2/3 = (α2

sA
1/3)2

∼ 1α
3

sA
1/3 = αs(α

2

sA
1/3) ∼ αs

This mechanism is 
dominant for central 
collisions.

Note that the factorization is broken already at the lowest order. 

pp pA
Kharzeev, KT,2005
Kharzeev, Levin, Nardi, KT,2009
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α=2/3 plateau: black disk 
regime.

xF

dotted : s = 200 GeV
solid : s = 38 GeV
dashed : s = 19 GeV

dashed-dotted : s = 5.5 TeV
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Additional assumptions:

J/ψ is non-relativistic. Relativistic 
correction depends on m but not 
on energy - included in prefactor.

Parametrically small corrections 
due to the real part and off-
diagonal matrix elements are 
neglected.

BREAKDOWN OF XF SCALING
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J/Ψ PRODUCTION IN DA AND AA
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Anomalous suppression in AA is probably due to hot medium effects. 

• Polarization of J/ψ -? 
• Production of χc, ψ’ -? 
• Compare with DY.
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Need these measurements in dA!
It may shed light on J/ψ production in pp ...
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Typical inelastic event Typical diffractive event

15% of all low-x events!!

DIFFRACTION

Diffraction measures quantum fluctuations 
of the CGC fields

DIS:
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DIFFRACTION IN PA

Similar to inclusive hadrons, but much stronger rapidity 
dependence ⇒ more sensitive to low x.

KT, 2008
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AZIMUTHAL CORRELATIONS IN PA

•Azimuthal correlations in pA:→ calibration of AA

7

observe suppression of the bak-to-back correlation in dAu as compared to the pp ones in agreement

with the experimental data. In Fig. 3 we also see the depletion of the back-to-back correlation as

a function of centrality. Note, that at the time of publication the precise centrality classes of the

data shown in the lower row of Fig. 3 were not known.
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FIG. 1: Correlation function at the central rapidity. Kinematic region is 4 < pT < 6, 2 < pA < pT (all

momenta are in GeV), yT = 3.1, yA = 3. Left (right) panel: minbias pp (dAu) collisions. Data from [48].
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FIG. 2: Correlation function at forward rapidities. Kinematic region is pT > 4, 1.5 < pA < pT (all momenta

are in GeV), yT = 3.1, yA = 3. Left (right) panel: the minbias pp (dAu) collisions. Data from [49].

In addition to gg → gggg and gg → ggqq̄ processes that we took into account in this section,

production of valence quark of deuteron gqv → gqvgg gives a sizable contribution at forward

rapidities due to not very small value of x associated with deuteron (x ≈ 0.2 for pT = 2 GeV

at y = 3). Contribution of this process to azimuthal correlations was analyzed in [21, 50] in the

framework of the dipole model in MRK. However, the corresponding expression in kT -factorization

in QMRK is presently unknown thus preventing us from taking it into account in our calculation.
∗

In-spite of this we believe that the general structure of the correlation function as well as its

∗ Authors of [17, 21] discussed the process gqv → ggqv assuming the collinear approximation to the unintegrated
valence quark distribution [51].

STAR
KT, 2010
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AZIMUTHAL CORRELATIONS FROM CGC

Kovchegov, KT 2002,2003

Mini-jet 
correlations in 
CGC
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AZIMUTHAL CORRELATIONS

STAR 
Preliminary

dAu (“some flow”)

pp
(nonflow)

AuAu (flow + non-flow)

At high pt in
central
collisions,
azimuthal
correlation in
AuAu could
be dominated
by nonflow.

v2·Mult.

•Rapidity correlations → Kevin Dusling
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STRONG MAGNETIC FIELD

!
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!=0

reaction plane

A
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#

•eB≈ mπ2 >>me2 → above the Schwinger’s 
value!
•B≈const 
•A fascinating opportunity to study the high 
intensity QED!

•E.g. strong B indices energy loss on fermions that can prevent light  quarks from 
escaping the plasma (at LHC). 
• This energy loss is azimuthally asymmetric - contributes to v2.

Η�1

Η�0

Reaction plane

u, eB�mΠ2, pT�5GeV
B
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1. High pT, higher statistics measurements in dA will certainly help restrict 
CGC model parameters and allow better calibration of AA. 

• At high pT CGC must agree with pQCD. What is the relevant scale?

2. RdA at higher/lower energy is needed to resolve the role of fragmentation 
vs CGC. 

3. J/ψ production mechanism remains as mysterious as ever. Measurements of 
ψ’, χc, etc., polarizations and pT spectra will certainly help.

4. Correlations in impact parameter space (diffraction), rapidity and azimuth 
(v2) yield a lot of interesting information ⇒ but must be calibrated in dA!

5. If existence of strong magnetic field B is experimentally confirmed, RHIC 
will be the first machine in the world to study the high intensity super-critical 
QED. Don’t miss the opportunity!

SUMMARY
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